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NRF2 as a Therapeutic Target
in Neurodegenerative Diseases
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Abstract

Increased reactive oxygen species production and oxidative stress have been implicated in the pathogenesis of numerous

neurodegenerative conditions including among others Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,

Friedrich’s ataxia, multiple sclerosis, and stroke. The endogenous antioxidant response pathway protects cells from oxidative

stress by increasing the expression of cytoprotective enzymes and is regulated by the transcription factor nuclear factor

erythroid 2-related factor 2 (NRF2). In addition to regulating the expression of antioxidant genes, NRF2 has also been

shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. This is because mito-

chondrial dysfunction and neuroinflammation are features of many neurodegenerative diseases as well NRF2 has emerged as

a promising therapeutic target. Here, we review evidence for a beneficial role of NRF2 in neurodegenerative conditions and

the potential of specific NRF2 activators as therapeutic agents.
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Introduction

Reactive oxygen species (ROS) serve as critical intracel-

lular signaling molecules but in excess can cause oxida-

tive stress and damage organelles and macromolecules,

eventually leading to cell death (Zuo et al., 2015).

Increased ROS production and oxidative stress have

been implicated in the pathogenesis of numerous neuro-

degenerative conditions, including, among others,

Alzheimer’s disease (AD; Behl, 2005), Parkinson’s dis-

ease (PD; Trist et al., 2019), Huntington’s disease (HD;

Browne and Beal, 2006), Friedrich’s ataxia (Lupoli et al.,

2018), multiple sclerosis (MS; Di Filippo et al., 2010),

and stroke (Rodrigo et al., 2013). Aging is the primary

risk factor for most neurodegenerative diseases, and oxi-

dative stress is known to increase with aging. Although

increased oxidative stress is the cumulative result of many

factors including changes in tissue antioxidant status,

increased mitochondrial dysfunction, and altered metal

homeostasis, the majority of the excessive ROS are pro-

duced by the mitochondria (Buendia et al., 2016). The

endogenous antioxidant response pathway protects cells

from oxidative stress by increasing the expression of

cytoprotective enzymes that can scavenge free radicals

and reduce the risk of cellular damage caused by ROS
(Itoh et al., 1997; Motohashi and Yamamoto, 2004;
Buendia et al., 2016). The transcription factor nuclear
factor erythroid 2-related factor 2 (NRF2, also called
NFE2L2) regulates this pathway by binding to antioxi-
dant response elements (AREs) in the promoters of anti-
oxidant genes (Itoh et al., 1997; Motohashi and
Yamamoto, 2004). These AREs are cis-acting enhancer
sequences. Past studies identified a necessary ARE core
sequence of RTGACnnnGC, but this sequence alone is
insufficient to mediate induction and requires additional
flanking nucleotides that can vary between different AREs
(Wasserman and Fahl, 1997).

NRF2 is a member of the cap-n-collar family of
basic leucine zipper proteins. NRF2 is normally bound in
the cytosol to Kelch-Like ECH-Associated Protein 1
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(KEAP1) that targets it for degradation by the proteasome.

However, in the presence of electrophiles or oxidative

stress, the nucleophilic cysteine sulfhydryl groups on

KEAP1 are modified, resulting in an allosteric conforma-

tional change that diminishes KEAP-dependent degrada-

tion of NRF2 and allows the transcription factor to

accumulate in the nucleus (Kobayashi et al., 2006). While

this is the classical mode of NRF2 activation, other mech-

anisms, including phosphorylation, can also result in its

dissociation from KEAP1 and increased nuclear localiza-

tion (Huang et al., 2002; Chen et al., 2019; Xiao et al.,

2019). Within the nucleus, NRF2 forms a heterodimer

with small musculoaponeurotic Maf proteins and binds

to ARE consensus sequence in the promoter of target

genes (Esteras et al., 2016).
NRF2 is ubiquitously expressed (Moi et al., 1994) and

in the brain is an important defense against toxic insults

in both glial cells as well as neurons (Lee et al., 2003;

Jakel et al., 2007; Chen et al., 2009; Vargas and

Johnson, 2009). In addition to upregulating numerous

antioxidant enzymes, NRF2 can also increase expression

of anti-inflammatory mediators, Phase I and II drug-

metabolizing enzymes as well as mitochondrial pathways

(Nguyen et al., 2009; Sandberg et al., 2014; Dinkova-

Kostova and Abramov, 2015; Buendia et al., 2016;

Hayashi et al., 2017; Sivandzade et al., 2019).

Antioxidant Role of NRF2

Within the central nervous system, upregulation of

NRF2 target genes, such as heme oxygenase-1

(HMOX1), glutathione S-transferase (GST), superoxide

dismutase (SOD), catalase (CAT), NAD(P)H dehydroge-

nase (quinone) 1 (NQO1), and others, can make neurons

more resistant to oxidative insults (Chen et al., 2000;

Satoh et al., 2006; Giordano et al., 2007; Tanito et al.,

2007; Lim et al., 2008).

Anti-Inflammatory Role of NRF2

Because of the cross talk that exists between antioxidant

and anti-inflammatory pathways, many of the anti-

inflammatory and mitochondrial actions of NRF2 have

been considered secondary to its antioxidant effects.

For example, the classical proinflammatory transcription

factor NFkB is activated by oxidative stress that can

be blocked by the NRF2-dependent induction of antiox-

idant target genes, and thus, the transcription of

proinflammatory cytokines is decreased (Lee et al.,

2009a; Bellezza et al., 2012). However, NRF2 has been

shown to directly regulate the expression of anti-

inflammatory mediators such as interleukin (IL)-17D,

CD36, macrophage receptor with collagenous structure,

and G protein-coupled receptor kinase (Thimmulappa

et al., 2002; Ishii et al., 2004; Saddawi-Konefka et al.,

2016). Moreover, NRF2 has recently been implicated

in reducing the expression of the proinflammatory cyto-

kines such as tumor necrosis factor (TNF)-a, IL-6, IL-8,
and IL-1b in microglia, macrophages, monocytes, and

astrocytes (Kobayashi et al., 2016; Quinti et al., 2017).

Mitochondrial Role of NRF2

A complex interplay also exists between mitochondrial

function and antioxidant response. By inducing free-

radical scavenging enzymes, NRF2 protects mitochondria

from oxidative damage. NRF2 can also directly regulate

mitochondrial biogenesis as well as function and by

improving mitochondrial function diminishes overproduc-

tion of intracellular ROS. NRF2 activation affects the

expression of many mitochondrial enzymes important

for proper bioenergetic function including malic enzyme

1, isocitrate dehydrogenase 1, glucose-6-phosphate dehy-

drogenase, and 6-phosphogluconate-dehydrogenase

(Morgan et al., 2013; Ku and Park, 2017). A role has

also been described for NRF2 in maintaining mitochon-

drial integrity and regulating mitochondrial biogenesis.

It has been reported that NRF2 activation protects mito-

chondria by opening the mitochondrial permeability tran-

sition pore (Lee et al., 2000; Greco and Fiskum, 2010;

Greco et al., 2011) and that declining NRF2 signaling is

associated with increased damage to mitochondrial DNA

(mtDNA; Li et al., 2018). In addition, NRF2 activation

modulates the expression of ATP synthase subunit a and

NDUFA4, two components of the electron transport

chain (Abdullah et al., 2012; Agyeman et al., 2012), and

mice in which NRF2 has been deleted have lower mtDNA

globally than wild-type (WT) mice (Zhang et al., 2013).

In addition, NRF2 activation affects the expression of

several regulators of mitochondrial biogenesis including

Sirt1 (sirtuin 1), PPARc (peroxisome proliferator-

activated receptor c), and Pgc1a (PPARc coactivator

1a), considered to be the master regulator of biogenesis

(Cho et al., 2010; Bellezza et al., 2012; Lai et al., 2014; Ping

et al., 2015; Huang et al., 2017a; Song et al., 2018).

Role of NRF2 in Aging

NRF2 expression and activity are diminished in both

aged mice and humans (Suh et al., 2004; Collins et al.,

2009; Duan et al., 2009; Demirovic and Rattan, 2011;

Cheng et al., 2012; Rahman et al., 2013). Because oxida-

tive stress, inflammation, and mitochondrial dysfunction

are all features of the aging brain and because aging is the

primary risk factor for most neurodegenerative diseases,

NRF2 has emerged as an attractive target for clinical

intervention. In fact, the NRF2-activating compound

dimethyl fumarate (DMF) is an existing FDA-approved

therapy for use in MS. This review will primarily focus
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on the therapeutic potential of NRF2 activation in other
neurodegenerative conditions.

NRF2 and MS

MS is a chronic inflammatory neurodegenerative disor-
der that currently affects more than 2.3 million people
worldwide (Browne et al., 2014). Demyelination, astro-
cytosis, axonal degeneration, and sclerotic plaques are all
features of the autoimmune response that occurs in the
disease (Compston and Coles, 2008). Elevated levels of
proinflammatory cytokines are seen in the cerebrospinal
fluid (CSF) of MS patients (Khaibullin et al., 2017) as
have increased levels of chemokines involved in B cell
migration (Kalinowska-Lyszczarz et al., 2011). Large-
scale gene expression studies using either peripheral
blood monocytes or brain tissue from MS patients have
also found altered expression of several genes involved in
the activation of T and B cells (Ramanathan et al., 2001).

Oxidative stress and mitochondrial dysfunction are
also prominent features of the disease. The activation
of microglia and macrophages is a major contributor to
the increased ROS seen in MS (Genestra, 2007). These
elevated ROS levels along with the enhanced inflamma-
tory response negatively affect mitochondrial function.
Mitochondrial injury, oxidative stress, and altered
metabolism are thought to be connected to the formation
of plaques and subsequent neurodegeneration in both
white and gray matter lesions (Fischer et al., 2012).

Several mouse models of MS effectively recapitulate
the inflammatory response, mitochondrial dysfunction,
and oxidative stress seen in the disease. In the experimen-
tal autoimmune encephalomyelitis (EAE) model, mito-
chondrial dysfunction appears early in the disease
progression with damage to the mitochondria being evi-
dent even before the inflammatory processes of the dis-
ease develop (Qi et al., 2006; Sadeghian et al., 2016). EAE
mice also show high levels of oxidative damage in the
spinal cord along with elevated levels of oxidative
stress-induced enzymes (Wang et al., 2017a) and reduced
frequency of TH1, TH17, and B cell MHCII expression
(Schulze-Topphoff et al., 2016). Similar observations
have been made in the lipopolysaccharide (LPS)-induced
model of MS. Elevated TNFa, IL-6, and IL-10 is seen in
the blood of LPS-treated animals as are increased
markers of oxidative stress (Yang et al., 2018).
Widespread mitochondrial dysfunction is also observed
throughout the brains of LPS-treated animals (Noh
et al., 2014).

Multiple reports suggest a role for NRF2 in MS path-
ogenesis. Loss of NRF2 has been shown to result in more
rapid onset and a more severe clinical course following
EAE treatment that was accompanied by increased glial
activation and exacerbated spinal cord damage and
axonal degeneration as well as increased levels of

proinflammatory cytokines (Johnson et al., 2010;
Larabee et al., 2016; Table 1). Conversely, a number of
NRF2-activating compounds have shown beneficial
effects in MS model systems. NRF2 activation by resver-
atrol, lycopene, quercetin, and ferulic acid has been
shown to reduce LPS-induced neurotoxicity, improve
synaptic and mitochondrial function, and reduce inflam-
matory markers as well as gliosis (Chen et al., 2017;
Khan et al., 2018; Rehman et al., 2019; Wang et al.,
2019). In the EAE model, DMF treatment increased
NRF2 activation in neurons and glial cells and improved
disease score ratings, an effect that was lost with NRF2
deletion (Linker et al., 2011).

NRF2 activation as a clinical target is also well estab-
lished in MS. DMF, also known as Tecfidera or BG-12,
was licensed as an oral therapy for relapsing remitting
MS in 2013. DMF treatment has been evaluated in Phase
I and Phase II trials and has been shown to reduce
relapse rates and decrease the number and progression
of lesions, even though no differences were seen on the
expanded disability status scale (Kappos et al., 2008; Fox
et al., 2012; Gold et al., 2012; Table 2). DMF has also
been shown to be comparable or superior to several other
MS treatments. DMF-treated patients had lower annu-
alized relapse rates and 12-week disability progression
when compared with patients treated with glatiramer ace-
tate (Chan et al., 2017). Patients who switched from first-
generation platform disease-modifying therapies to DMF
also saw reductions in annualized relapse rates and
lesions, and switching to DMF treatment was found to
be comparable with fingolimod and superior to terifluno-
mide (Fernandez et al., 2017; Prosperini et al., 2018;
Ontaneda et al., 2019; Table 2).

DMF treatment has been shown to increase the
expression of the NRF2 target gene NQO1 in the blood
of MS patients (Gopal et al., 2017; Hammer et al., 2018),
and those patients who showed a significant increase in
NQO1 expression after 4 to 6 weeks of treatment were
more likely to achieve no evidence of disease activity
status 1 year later (Hammer et al., 2018; Table 2).

The exact mechanism by which DMF exerts its benefi-
cial effects has not been fully described, although multiple
mechanisms including shifting toward anti-inflammatory
immune balance, inhibition of T cell activation, induction
of B and T cell apoptosis, inhibition of proinflammatory
cytokines, and reduction of memory T cells have all been
suggested as contributing factors (Treumer et al., 2003;
Longbrake et al., 2016; Schulze-Topphoff et al., 2016;
Smith et al., 2017; Montes Diaz et al., 2018a). There
have been many clinical and basic science studies of
DMF in MS. An excellent and thorough review of the
history and mechanism of DMF as an MS therapy was
recently published by Montes Diaz et al. (2018b).

Treatment with other NRF2-activating compounds
has likewise demonstrated beneficial results in MS
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patients. It has been reported that Vitamin D, omega 3
fatty acids, and lipoic acid all result in decreased inflam-
matory markers, increased antioxidant capacity, and
improvements on the expanded disability status scale
(Gallai et al., 1995; Khalili et al., 2014; Kouchaki et al.,
2018; Table 2), although NRF2 activation was not inves-
tigated as a mechanism in any of these studies. Vitamin D
supplementation has also been associated with improved
cognitive function in MS patients, especially those that
were vitamin D deficient (Darwish et al., 2017; Table 2).

NRF2 and AD

AD is the most common form of dementia. It currently
affects an estimated 5.7 million people, and this number
is predicted to reach 14 million by 2050 (Alzheimer’s
Association, 2017). The two pathological hallmarks of
AD are intracellular neurofibrillary tangles comprised
of the protein tau and extracellular b-amyloid (Ab) pla-
ques. The relationship between these hallmarks and the
inflammation, oxidative stress, and mitochondrial dys-
function that occurs in AD is complex. The Ab plaques
activate nearby microglia which can result in increased
release of proinflammatory cytokines and ROS which
can result in mitochondrial dysfunction (Galasko and
Montine, 2010). However, oxidative stress and neuroin-
flammation are also believed to facilitate the pathological
protein aggregation seen in AD (Di Bona et al., 2010).

Increased oxidative stress is considered to be an early
event in AD brains (Lovell and Markesbery, 2007), and
diminished antioxidant capacity along with increased
markers of oxidative stress are evident in both the
blood and brains of AD patients (Gubandru et al.,
2013; Schrag et al., 2013; Zabel et al., 2018). Reduced
neuronal mitochondrial function and number have also
been reported in AD patients (Hirai et al., 2001), and
studies suggest that alterations in mitochondrial bioener-
getics in the brain precede and may even induce cognitive
decline in AD (Yao et al., 2009).

It has been reported that NRF2 nuclear expression is
decreased in AD and a recent meta-analysis of microar-
ray datasets identified 31 downregulated ARE genes in
AD patients (Ramsey et al., 2007; Kanninen et al., 2008;
Wang et al., 2017b). Similarly, in transgenic mouse
models of AD, loss of NRF2 has been shown to increase
levels of Ab and phosphorylated tau (Branca et al., 2017;
Rojo et al., 2017); increase glial activation, markers of
oxidative stress, and neurodegeneration; and exacerbate
cognitive decline (Rojo et al., 2017; Rojo et al., 2018;
Table 1).

Conversely, the activation of NRF2 has been shown
to be beneficial in models of AD. A recent study found
that NRF2 activation by sulforaphane reduces amyloid
secretion and normalizes cytokine in AD astrocytes
derived from human-induced pluripotent stem cells

(Oksanen et al., 2019). In in vivo studies, the NRF2-

activating compound tert-Butylhydroquinone (tBHQ)

was found to protect against cell death in isolated neu-

rons exposed to Ab (Kanninen et al., 2008), and oral

curcumin, another NRF2 activator, has been shown to

prevent synaptic degradation and improve spatial learn-

ing in the 5xFAD mouse model of Ab accumulation

(Zheng et al., 2017). DMF has likewise been shown to

protect against Ab-induced cell death in vitro (Campolo

et al., 2018) and also to improve spatial memory in a rat

model of AD (Majkutewicz et al., 2016).
While therapies specifically targeting NRF2 have yet

to be investigated clinically, there is some evidence that

treatment with antioxidant compounds could be benefi-

cial. Trials with vitamin E have shown slight improve-

ments in cognitive function and activities of daily life at

high doses (Sano et al., 1997; Dysken et al., 2014), and

treatment with a combination of omega 3 fatty acids and

alpha lipoic acid slowed decline in mini-mental state

exam as well as activities of daily life (Shinto et al.,

2014; Table 2). Although these compounds are known

to activate NRF2, none of these studies investigated

that specifically.

Table 1. Summary of Studies Using NRF2KO in
Neurodegenerative Disease Models.

Disease Result of loss of NRF2

MS - More severe clinical course, increased glial activation and

exacerbated spinal cord damage, increased proinflam-

matory cytokines, and axonal degeneration in response

to EAE (Johnson et al., 2010; Larabee et al., 2016)

AD - Enhanced Ab and tau pathology, increased glial activa-

tion, markers of oxidative stress and neurodegenera-

tion, and exacerbated cognitive decline in transgenic

mouse models (Branca et al., 2017; Rojo et al., 2017,

2018)

PD - Increased sensitivity to MPTP with enhanced dopami-

nergic cell loss and microglial activation (Chen et al.,

2009; Rojo et al., 2010)

- Increased vulnerability to 6-OH dopamine-induced cell

loss (Jakel et al., 2007)

- Increased inflammation, protein misfolding, and neuronal

death in transgenic model of aSyn accumulation (Lastres-

Becker et al., 2016)

HD - Increased vulnerability to 3-NP and malonic acid-induced

lesions in the striatum (Shih et al., 2005)

Stroke - Increased infarct size, enhanced inflammatory response,

and neurobehavioral deficits (Shih et al., 2005; Li et al.,

2013)

Note. NRF2¼ nuclear factor erythroid 2-related factor 2; MS¼multiple

sclerosis; EAE¼ experimental autoimmune encephalomyelitis;

AD¼Alzheimer’s disease; PD¼ Parkinson’s disease; MPTP ¼ 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine; HD¼Huntington’s disease; 3-NP¼ 3-

nitropropionic acid.
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NRF2 in PD

PD is a progressive and incurable movement disorder

that is accompanied by varying degrees of cognitive dys-

function and dementia and is the second most common

neurodegenerative disease (Goris et al., 2007; Tufekci

et al., 2011). PD is characterized by loss of dopaminergic

neurons in the substantia nigra and the accumulation of

intracellular protein aggregates known as Lewy bodies,

enriched with a-synuclein (aSyn; Bhat et al., 2018).

Oxidative stress, mitochondrial dysfunction, and neuro-

inflammation have all been implicated in the develop-

ment and progression of the disease (Navarro and

Boveris, 2009; Di Filippo et al., 2010).
Imaging studies have observed mitochondrial dysfunc-

tion in the dopamine neurons in the substantia nigra

early in PD progression (Hattingen et al., 2009), and

reduced expression and activity of enzymes in the elec-

tron transport chain has been observed in the brains of

PD patients throughout the course of the disease

(Schapira et al., 1989, 1990; Trimmer et al., 2000). In

late-stage PD patients, increased mutations in mtDNA

are seen which lead to dysfunction in Complex I and

increased oxidative stress (Schapira, 2008; Moon and

Paek, 2015). Increased markers of oxidative damage

along with decreased antioxidant enzyme activity have

also been observed in the blood of PD patients as well

(Wei et al., 2018). Inflammation is also prevalent in PD
patients. Proinflammatory cytokines such as TNFa and

IL-6 are known to be elevated in both the brain and CSF
of patients with PD (Dzamko et al., 2015; Hirsch et al.,
2012). In fact, it has even been hypothesized that PD
pathogenesis may result from an inflammatory infection
of the gut and that inflammation then spreads systemi-

cally (Weller et al., 2005).
There are multiple lines of evidence suggesting that

NRF2 may be a viable therapeutic target for PD.

NRF2 expression and activity has been shown to be
altered in nigral dopaminergic neurons in PD patients
(Schipper et al., 1998; Ramsey et al., 2007) and a func-
tional haplotype in the human NRF2 promoter that
increases transcriptional activity of the gene is associated

with decreased risk and delayed onset of PD (von Otter
et al., 2010). Pharmacological alteration of NRF2 expres-
sion levels can phenocopy this protective haplotype in
mice (Huang et al., 2017b; Meng et al., 2017).

In addition, in the 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) model of PD, decreased NRF2
activity has been reported, and it was observed that
loss of NRF2 exacerbated the phenotype (Chen et al.,
2009; Table 1). Dopaminergic neuronal loss and micro-

glial activation were both also more severe in mice
in which NRF2 has been deleted (Rojo et al., 2010;
Table 1). These mice show a similar increase in

Table 2. Summary of Clinical Interventions With NRF2-Activating Compounds.

Disease Intervention Outcome

MS DMF - Reduced relapse rates and decreased the number and progression of lesions (Kappos

et al., 2008; Fox et al., 2012; Gold et al., 2012)

- Increased no evidence of disease status (Hammer et al., 2018; Prosperini et al., 2018)

Omega 3 fatty acids - Decreased inflammatory markers and increased antioxidant capacity (Gallai et al., 1995)

Vitamin D - Improved cognitive function in Vitamin D-deficient patients (Darwish et al., 2017)

Vitamin Dþ omega

3 fatty acids

- Decreased inflammatory markers as well as increased antioxidant capacity and

improvement on expanded disability status scale (Kouchaki et al., 2018)

Lipoic acid - Decreased inflammatory markers as well as increased antioxidant capacity improvement

on expanded disability status scale (Khalili et al., 2014)

AD Vitamin E - Improved cognitive function and activities of daily life (Sano et al., 1997; Dysken et al.,

2014)

Omega 3 fatty

acidþ alpha lipoic acid

- Slowed decline in mini-mental state exam and in activities of daily life (Shinto et al., 2014)

PD N-acetylcysteine - Increased antioxidant activity and improved scores on Unified Parkinson’s Disease Rating

Scale (Coles et al., 2018)

Vitamin Dþ omega

3 fatty acids

- Increased total antioxidant capacity and improved scores on Unified Parkinson’s Disease

Rating Scale (Taghizadeh et al., 2017)

Friedrich’s

Ataxia

Omaveloxolone - Improved scores on modified Friedrich’s ataxia rating scale (Reata Pharmaceuticals, 2019)

Stroke Vitamin E - Improvement on Matthew Scale and Barthel index as well as decreased plasma lipid

peroxidation (Daga et al., 1997)

Soybean isoflavones - Increased brachial flow-mediated dilation, enhanced antioxidant markers, and decreased

circulating proinflammatory cytokines as well as markers of oxidative damage (Li and

Zhang, 2017)

Note. DMF¼ dimethyl fumarate; MS¼multiple sclerosis; AD¼Alzheimer’s disease; PD¼ Parkinson’s disease.

Brandes and Gray 5



vulnerability to 6-OH dopamine, and this damage can be
prevented by transplantation of astrocytes overexpress-
ing NRF2 (Jakel et al., 2007; Table 1). Likewise, in a
model of aSyn accumulation, loss of NRF2 exacerbated
inflammation, protein misfolding, and neuronal death
(Lastres-Becker et al., 2016; Table 1).

Activation of NRF2 has been associated with neuro-
protection in various PD model systems. In MPTP-
treated mice, NRF2 activation, via siRNA mediated
knockdown of KEAP1, was associated with a reduction
in oxidative stress and neuroinflammation (Williamson
et al., 2012). NRF2 activation by sulforaphane also
induced the expression of antioxidant enzymes and pro-
tected against dopaminergic neuronal loss in MPTP-
treated mice (Jazwa et al., 2011) as did a NRF2-
activating synthetic triterpenoid that also reduced ROS
levels and upregulated genes involved in mitochondrial
biogenesis (Yang et al., 2009). In addition, in
neuroblastoma-overexpressing aSyn, treatment with
tBHQ reduced ROS levels and improved mitochondrial
respiratory rates (Fu et al., 2018).

Although NRF2 has not yet been targeted in clinical
interventions in PD, epidemiological evidence suggests
that high levels of consumption of the NRF2-activating
vitamins E and C are associated with decreased risk of
PD (Zhang et al., 2002; Seidl and Potashkin, 2011). In
addition, 4 weeks of treatment with N-acetyl cysteine,
which also activates NRF2, improved scores on the
Unified Parkinson’s Disease Rating Scale and increased
peripheral markers for antioxidant activity (Coles et al.,
2018) as did 12 weeks of intervention with omega 3 fatty
acids and vitamin E (Taghizadeh et al., 2017; Table 2).
However, NRF2 activation was not specifically implicat-
ed as a mechanism of action in either of these studies.

NRF2 and HD

HD is an autosomal dominant neurodegenerative disor-
der caused by a polyglutamine expansion in the hunting-
tin protein (Jimenez-Sanchez et al., 2017). Its primary
symptoms are motor impairment, cognitive decline, and
psychiatric problems which worsen as the disease pro-
gresses. Degeneration of both the neostriatal and cerebral
cortex are believed to contribute to the cognitive impair-
ment and motor symptoms (Vonsattel et al., 1985;
Halliday et al., 1998). As the huntingtin protein aggre-
gates, it becomes toxic to neurons and promotes the gen-
eration of ROS (Goswami et al., 2006). Oxidative stress is
particularly prominent in the neostriatum of HD brains
(Sorolla et al., 2008) and is thought to be an important
driver of degeneration. Markers of increased oxidative
stress are also evident peripherally. Plasma lipid peroxi-
dation is increased, and glutathione levels are decreased
in HD patients. This imbalance can be observed prior to
symptom onset and continues to be proportional to the

severity of the disease as it progresses (Chen et al., 2007;
Klepac et al., 2007). Increased oxidative damage to pro-
teins as well as mtDNA has also been observed in the
brains of HD patients (Chen et al., 2007; Duran et al.,
2010; Johri and Beal, 2012). Postmortem analysis also
revealed that the levels of mitochondrial enzymes
involved in oxidative phosphorylation are also depressed
in the brains of HD patients, especially the basal ganglia
(Chen et al., 2007; Duran et al., 2010). In addition to
reports of increased oxidative stress (Browne et al.,
1997; Browne and Beal, 2006; del Hoyo et al., 2006;
Chen et al., 2007; Klepac et al., 2007; Chang et al.,
2012) and mitochondrial dysfunction (Browne, 2008;
Damiano et al., 2010; Kim et al., 2010), chronic inflam-
mation is also evident in HD (Pavese et al., 2006; Tai
et al., 2007; Bjorkqvist et al., 2008; Politis et al., 2011).
Inflammation appears to be an early event in the patho-
genesis of HD, and PET imaging has revealed increased
microglial activation that is already evident in the stria-
tum and cortex of presymptomatic HD carriers (Tai
et al., 2007; Politis et al., 2011). Plasma concentrations
of inflammatory cytokines are likewise elevated prior to
the onset of disease symptoms, and increased immune
activity persists in the CSF of HD patients (Bjorkqvist
et al., 2008).

The same mitochondrial dysfunction, oxidative stress,
and neuroinflammation are also seen in the brains of
animal models of HD, and using these models, studies
have demonstrated an important role for NRF2. In the
3-nitropropionic acid (3-NP)-induced model of HD,
NRF2 activation is reduced and mice in which NRF2
has been knocked out have been reported to be significant-
ly more vulnerable to both 3-NP and malonic acid-induced
lesions in striatum (Shih et al., 2005a; Table 1). Conversely,
intrastriatal injections of NRF2 overexpressing astrocytes
has been found to be protective against 3-NP and malonic
acid-induced damage (Calkins et al., 2005).

Pharmacological activation of NRF2 likewise shows
beneficial results in mouse models of HD. DMF treat-
ment protects cortical and striatal neurons, slows weight
loss, helps maintain motor function, and increases life-
span in WT but not mice lacking NRF2 (Ellrichmann
et al., 2011; Jin et al., 2013). Oral administration of
NRF2-activating synthetic triterpenoids similarly attenu-
ated motor deficits, increased longevity, and reduced oxi-
dative stress in a transgenic HD mouse model (Stack
et al., 2010), and a NRF2-activating compound isolated
from the plant Panax ginseng Meyer decreased ROS and
restored antioxidant enzyme levels in the striatum and
ameliorated behavioral impairments in the 3-NP mouse
model (Gao et al., 2015). In addition, sulforaphane has
beneficial effects in both transgenic and 3-NP-induced
models of HD. Sulforaphane promoted huntingtin pro-
tein degradation and reduced cytotoxicity in both central
and peripheral tissues of transgenic animals (Liu et al.,
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2014) and was also able to suppress 3-NP-induced proin-
flammatory cytokine production in the striatum and
improve behavioral impairments (Jang and Cho, 2016).

In humans, disrupted NRF2 signaling has also been
observed. The NRF2 target antioxidant enzymes gluta-
thione peroxidase and SOD1 are reduced in the leuko-
cytes of HD patients compared with controls (Chen
et al., 2007). In addition, it has been reported that in
striatal neurons, abnormal huntingtin protein disturbs
NRF2 signaling, promoting mitochondrial dysfunction
and increased oxidative stress (Kim et al., 2010).
Although NRF2-activating compounds have not been
tested in clinical trials in primary monocytes from HD
patients, NRF2 induction by the KEAP1 modifying
small molecule C151 repressed IL-1, IL-6, IL-8, and
TNFa production (Quinti et al., 2017).

NRF2 and Friedrich’s Ataxia

Friedrich’s ataxia is an inherited degenerative neuromus-
cular disorder for which there are no approved therapies
(Aranca et al., 2016). It is the most common hereditary
ataxia affecting about 1 in 50,000 people worldwide
(Polek et al., 2013; Vankan, 2013). The disease is an auto-
somal recessive condition primarily affecting the dorsal
root ganglia, cerebellar dentate nuclei, and the heart. It is
caused by a GAA repeat expansion mutation in the fra-
taxin gene. This leads to transcriptional silencing which
results in a progressive decrease of frataxin protein
expression. Frataxin helps assemble iron sulfur clusters
necessary for proper mitochondrial function (Li et al.,
2008). In Friedrich’s ataxia patients, the decreased fra-
taxin expression causes mitochondrial iron overload,
impaired ATP production, and increased oxidative
stress (Li et al., 2008; Santos et al., 2010; Aranca et al.,
2016). The reduced ATP production is believed to
account for the progressive muscle weakness, fatigue,
and decreased coordination seen in patients with the dis-
ease. The increase in oxidative stress is also thought to be
pathogenic, leading to chronic depletion of antioxidants
and causing neurodegeneration (Nickel et al., 2014).
Cerebellar granule neurons are particularly susceptible
to these changes exhibiting significant increases in ROS
and lipid peroxidation along with reduced glutathione.
Studies using these cerebellar granule neurons have
shown that reduced frataxin production leads to
increased ROS which induces mitochondrial impairments
(Abeti et al., 2015, 2016).

NRF2 signaling dysfunction has been widely reported
in animal models of Friedrich’s ataxia. A conditional
frataxin knockout mouse line showed decreased NRF2
expression and increased KEAP1 expression (Anzovino
et al., 2017) and in the mouse motor neuron cell line
NSC-34, frataxin shRNA likewise reduced NRF2 expres-
sion and activity (Paupe et al., 2009). In contrast,

inducing NRF2 with sulforaphane or the NRF2-
activating compound EPI-7443 in neural stem cells iso-
lated from a Friedrich’s ataxia mouse model was shown
to reestablish proper differentiation which was previously
impaired in those cells (La Rosa et al., 2019). In cultured
motor neurons, sulforaphane also increased frataxin
levels as well as neurite number and extension (Petrillo
et al., 2017). Similar reductions in NRF2 expression have
been seen in fibroblasts isolated from patients (Paupe
et al., 2009; Petrillo et al., 2017), and sulforaphane treat-
ment likewise increased frataxin levels and enhanced neu-
rite outgrowth in these cells (Petrillo et al., 2017).

The NRF2-activating compound omaveloxolone has
been shown to be beneficial in the KIKO and the YG8R
mouse models of Friedrich’s ataxia as well as in fibro-
blasts isolated from human patients. In these models,
omaveloxolone restored Complex I activity, increased
glutathione levels, decreased ROS, and restored the mito-
chondrial membrane potential preventing cell death
(Abeti et al., 2018). Based on these promising preclinical
studies, omaveloxolone is currently undergoing clinical
testing. A recent press release announced the results of
their Phase II trial that found that 48 weeks of treatment
with the compound was generally well tolerated and
resulted in significantly improved scores on the modified
Friedrich’s ataxia rating scale (Reata Pharmaceuticals,
2019; Table 2).

NRF2 and Stroke

Stroke is the second leading cause of death worldwide
and the leading cause of acquired adult disability
(Lozano et al., 2012; Murray et al., 2012). Ischemic
stroke is characterized by decreased blood flow to parts
of the brain resulting in injury to brain tissue and
impaired neurologic functioning (Jauch et al., 2013;
Ding et al., 2017). A cascade of biochemical events
occur following an ischemic stroke that promote tissue
damage including inflammatory activation and mito-
chondrial dysfunction leading to an overproduction of
ROS. Eventual restoration of blood flow (reperfusion)
exacerbates inflammatory responses and ROS generation
leading to further damage from oxidative stress, includ-
ing degradation of vascular wall proteins and deteriora-
tion of blood–brain barrier (BBB) integrity (Stephenson
et al., 2000; Kunz et al., 2008; Harari and Liao, 2010;
Pradeep et al., 2012).

Animal studies have shown that mice in which NRF2
has been deleted have enhanced infarct size, inflammato-
ry response, and neurobehavioral deficits when compared
with NRF2 expressing mice (Shih et al., 2005b; Li et al.,
2013; Table 1). Conversely, NRF2 activation has been
shown to be beneficial in protecting the brain from
injury. tBHQ treatment attenuated neonatal hypoxic-
ischemic brain damage in rats (Zhang et al., 2018), and
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the NRF2-activating compound metformin likewise
reduced infarct volume and was able to attenuate cogni-
tive impairments in a mouse model of transient middle
cerebral artery occlusion (Kaisar et al., 2017).
Trichostatin A-induced NRF2 activation (resulting
from decreased KEAP1 expression) similarly increased
neuronal cell viability and reduced infarct volume follow-
ing stroke (Wang et al., 2012).

A number of plant-derived NRF2-activating com-
pounds have also been shown to have beneficial effects
in rodent models of stroke. When given prior to injury,
the plant-derived flavanol (-)-epicatechin was able to
reduce infarct size and the subsequent cognitive impair-
ment, but this effect was lost in mice that do not express
NRF2. Posttreatment also improved the same outcome
but in a time-sensitive manner (Shah et al., 2010). NRF2
activation by sulforaphane increased the expression of
cytoprotective genes in brain tissue and preserved BBB
integrity (Zhao et al., 2007), while ginkgolides and bilo-
balide have been shown to activate NRF2 and decrease
both cerebral ROS levels as well as infarct volume ratios
in middle cerebral artery occlusion rats (Liu et al.,
2019b). Activation of NRF2 by the isoquercetin also
attenuated oxidative stress and neuronal loss following
ischemia/reperfusion injury in mice by inhibiting NFkB
activation (Dai et al., 2018).

Clinical research into NRF2 activation as a stroke
therapy is limited, but a few dietary interventions with
compounds that can activate NRF2 do suggest a poten-
tial benefit. Following ischemic stroke, 6 weeks of vita-
min E supplementation was shown to elicit a greater
improvement in both the Matthew scale and Barthel
index than placebo. This was accompanied by a signifi-
cant reduction in plasma lipid peroxidation suggesting
increased antioxidant activity, although it is unknown
the contribution of NRF2 activation specifically to this
effect because while vitamin E can activate NRF2, it also
possesses free radical scavenging properties in and of
itself (Daga et al., 1997; Table 2). However, when
patients with ischemic stroke were given soybean isofla-
vones for 24 weeks, NRF2 activation was implicated in
the improvements observed. Supplementation resulted in
increased brachial flow-mediated dilation and NRF2 and
SOD expression along with decreased circulating levels of
C-reactive protein, 8-isoprostane, malondialdehdye, IL-
6, and TNFa. The effects on circulating oxidative stress
markers were lost when NRF2 was silenced (Li and
Zhang, 2017; Table 2).

The potential benefits of NRF2 activation as a means
of preventing stroke are somewhat less clear. A number
of large-scale prospective studies have been conducted
investigating supplementary with vitamins and have
yielded conflicting results. In one study of 8,171 female
health professionals with a history of cardiovascular dis-
ease who received vitamin C, vitamin E, or beta carotene

for a mean follow-up time of 9 years, it was determined
that those individuals who received vitamin C or vitamin
E experienced fewer strokes (Cook et al., 2007), although
again, whether this was due to their abilities to activate
NRF2 specifically was not determined. Conversely, in
another study where more than 20,000 adults with coro-
nary artery disease, occlusive arterial disease, or diabetes
were given supplementation with a combination of vita-
min E, vitamin C, and beta carotene for 5 years, there
was no difference in the incidence of stroke (Heart
Protection Study Collaborative Group, 2002). More
studies are clearly needed to determine whether directly
targeting NRF2 would be beneficial as a preventative
agent for ischemic stroke.

NRF Activating Compounds

While NRF2 activation occurs endogenously in response
to increased oxidative stress, it can also be induced by
exogenous agents. As previously mentioned, many
botanically derived and synthetic compounds have been
shown to potently activate the NRF2 pathway.

Botanically Derived NRF2 Activators

Sulforaphane is an organic isothiocyanate found in cru-
ciferous plants such as broccoli, brussels sprouts, cab-
bage, and cauliflower. Sulforaphane activates NRF2
through direct electrophilic modification of the cysteines
on KEAP1 allowing for dissociation of NRF2 and nucle-
ar translocation (Takaya et al., 2012). This activation has
been reported to increase the expression of antioxidant
enzymes in the hippocampus of treated animals (Wang
et al., 2014). Sulforaphane can also modulate mitochon-
drial dynamics through both NRF2-dependent and
-independent mechanisms (O’Mealey et al., 2017; de
Oliveira et al., 2018). It has also been demonstrated to
inhibit TNFa-induced NFkB activation both through
directly blocking the interaction of NFkB and its consen-
sus sequence as well as inhibiting IkB-a phosphorylation
and degradation (Moon et al., 2009; Checker et al.,
2015). These effects of sulforaphane have resulted in neu-
roprotection in both in vitro and in vivo in models of
stroke, traumatic brain injury (TBI), AD, PD, HD, and
MS (Zhao et al., 2005, 2006; Han et al., 2007; Kwak
et al., 2007; Zhao et al., 2007; Jazwa et al., 2011; Kim
et al., 2013; Srivastava et al., 2013; Liu et al., 2014; Jang
and Cho, 2016; Yoo et al., 2019).

Lycopene is an aliphatic hydrocarbon carotenoid that
can be found in plants such as tomatoes, papayas, and
watermelons. Lycopene has been shown to increase anti-
oxidant enzyme activity and decrease inflammatory
response in both d-galactose model and transgenic
models of AD (Yu et al., 2017; Zhao et al., 2017a). It
also attenuated Ab-induced mitochondrial damage in
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isolated cortical neurons (Qu et al., 2011; Qu et al., 2016)
and reduced proinflammatory cytokines in the brain of
Ab-exposed animals (Liu et al., 2018). Similar effects of
lycopene on oxidative and mitochondrial damage have
been demonstrated in a pentylenetetrazol-induced
model of seizure where it also decreased convulsive activ-
ity (Bhardwaj and Kumar, 2016; Kumar et al., 2016).
Lycopene also decreased markers of oxidative stress
and reduced neuronal cell loss in models of PD and
stroke (Prema et al., 2015; Lei et al., 2016) and was
able to attenuate BBB disruption and neurological defi-
cits in a model of subarachnoid hemorrhage (Wu et al.,
2015).

Curcumin is a polyphenol derived from Curcuma
longa rhizomes and has potent antioxidative and anti-
inflammatory properties (Agarwal et al., 2011; Kakkar
and Kaur, 2011; Dong et al., 2018). Curcumin activates
NRF2 both by electrophilic modification of KEAP1 as
well as by repression of KEAP1 expression (Ren et al.,
2019; Robledinos-Anton et al., 2019). Curcumin treat-
ment has been shown to suppress proinflammatory
gene expression through prevention of NFkB activation
in microglial cells (Cui et al., 2010; Zhang et al., 2010). In
a model of cerebral ischemia and reperfusion, this down-
regulation of NFkB resulted from NRF2 activation by
curcumin and reduced overall brain edema as well as
neurological dysfunction (Li et al., 2016). Curcumin
was similarly beneficial in models of intracerebral hem-
orrhage and TBI where again its neuroprotective effects
were linked to NRF2 activation (Wang et al., 2015;
Kobayashi et al., 2016; de Alcantara et al., 2017; He
et al., 2019).

Epigallocatechin gallate (EGCG) is the most abun-
dant catechin found in green tea. It was shown to upre-
gulate NRF2 activity via phosphorylation downstream
of p38MAPK and ERk1/2 signaling pathways (Yang
et al., 2015), although it can also activate NRF2 through
electrophilic disruption of its association with KEAP1
(Mori et al., 2010). In mice, EGCG has been shown to
protect against ischemia reperfusion injury in a NRF2-
dependent manner (Han et al., 2014) and has also been
shown to inhibit NFkB activity, reduce Ab fibrilization,
and improve memory in Ab exposed animals (Lee et al.,
2009b). Neuroprotective effects of EGCG have also been
demonstrated in vitro and in vivo in models of PD, MS,
and TBI accompanied by increased NRF2 activity and
enhanced antioxidant activity and reduced inflammatory
responses (Ma et al., 2010; Itoh et al., 2013; Wu, 2016;
Semnani et al., 2017; Xu et al., 2018).

Resveratrol is a bioactive polyphenol found in fruits
such as grapes and berries. Resveratrol activates NRF2
by phosphorylation via p38MAPK (Shi et al., 2018).
Resveratrol treatment has potent antioxidant and anti-
inflammatory effects and has been shown to regulate
mitochondrial biogenesis (Chiang et al., 2018; Chuang

et al., 2019). The NRF2-activating and mitochondrial
effects of resveratrol are thought to underlie its protective
effects in a rotenone model of PD (Gaballah et al., 2016;
Peng et al., 2016). Activation of NRF2 by resveratrol
also has been shown to both prevent against ischemic
injury and mitigate the oxidative stress induced by ische-
mic injury in rodents (Narayanan et al., 2015; Gao et al.,
2018). In addition, resveratrol treatment can also atten-
uate TBI-induced cognitive deficits in mice via NRF2
activation (Shi et al., 2018) and can ameliorate cellular
and mitochondrial damage in a drosophila model of spi-
nocerebellar ataxia by upregulating the same pathway
(Wu et al., 2018).

Alpha lipoic acid is another naturally occurring
NRF2-activating compound with neuroprotective
effects. While it can be found in low amounts in a
number of plants including spinach, broccoli, carrots,
and beets, it is more frequently consumed as a dietary
supplement. The exact mechanisms by which alpha lipoic
acid activates NRF2 is not currently known, although
the compound can form lipoyl-cysteinyl mixed disulfides
on KEAP1 which would prevent newly synthesized
NRF2 from binding to its chaperone (Dinkova-
Kostova et al., 2002; Kobayashi et al., 2006). However,
alpha lipoic acid has also been shown to activate protein
kinase C, one of the kinases that can activate NRF2 that
could represent an alternative mechanism of activation
(Sen et al., 1999). Activation of NRF2 by alpha lipoic
acid has been shown to inhibit cell loss following TBI
(Xia et al., 2019) as well as reduce infarct volume, oxida-
tive damage, and edema and promote neurologic recov-
ery following stroke (Lv et al., 2017). In models of PD,
alpha lipoic acid has been shown to decrease ROS, upre-
gulate mitochondrial biogenesis, restore ATP content,
and preserve dopaminergic neurons (Zaitone et al.,
2012; Zhao et al., 2017b), although whether NRF2 acti-
vation was required for these effects was not investigated.
Alpha lipoic acid also potently reduces inflammation in
mouse models of MS (Morini et al., 2004; Chaudhary
et al., 2015), yet, again, these studies did not investigate
whether this was linked to NRF2 activation.

The medicinal plant Centella asiatica (L) Urban also
contains many NRF2-activating compounds. The plant
contains high levels of four triterpene compounds,
Asiatic acid, madecassic acid, asiaticoside, and madecas-
soside (MS) that have all been shown to activate NRF2
but do not possess strong electrophilic properties (Yang
et al., 2016; Jiang et al., 2017; Fan et al., 2018; Liu et al.,
2019c; Meng et al., 2019). Centella asiatica also contains
many caffeoylquinic acids that we and others have shown
can activate NRF2 as well (Boettler et al., 2011; Gray
et al., 2014; Liang et al., 2019). Our lab has demonstrated
that a water extract of Centella asiatica can activate
NRF2 in neuroblastoma cells and isolated primary neu-
rons as well as in the brains of treated animals, and this
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activation is accompanied by improved mitochondrial
function, enhanced synaptic density, and improved cog-
nitive function in mouse models of aging and AD (Gray
et al., 2015; Gray et al., 2017a, 2017b; Gray et al., 2018a,
2018b). Other groups have likewise shown antioxidant,
anti-inflammatory, and cognitive-enhancing effects of the
plant in rodent models of chemically induced neurotox-
icity, stroke, seizure, PD, and HD (Gupta et al., 2003;
Flora and Gupta, 2007; Shinomol and Muralidhara,
2008a, 2008b; Haleagrahara and Ponnusamy, 2010;
Prakash and Kumar, 2013; Tabassum et al., 2013;
Doknark et al., 2014). Work is ongoing in our lab to
determine the requirement of NRF2 activation for the
beneficial effects of Centella asiatica in both normal as
well as pathological aging. Our most recent work has
indicated that the cognitive benefits of the water extract
of Centella asiatica (CAW), at least in healthy aging, do
require NRF2. The Object Location Memory task is a
test of spatial memory wherein the mouse using identical
objects one of which is moved during testing to a location
distinct from where it was during training (Figure 1(a)).
If the mouse remembers the training location, it should
spend a greater amount of time with the object in the new
location. NRF2KO mice exhibited cognitive impairments
relative to WT animals and while long-term CAW
treatment improved the performance in the Object
Location Memory test of 18-month-old WT mice but

had no effect on age-matched NRF2 knockout mice

(Figure 1(b)).

Synthetic Activators of the NRF2/ARE Pathway

DMF is an enoate ester formed by the condensation of

fumaric acid and methanol. It is currently an FDA-

approved disease-modifying drug for the treatment of

relapsing MS under the name TecfideraVR (Deeks, 2016).

Because DMF is a thiol-reactive electrophile, it is

thought to primarily activate NRF2 via cysteine modifi-

cation on KEAP1 (Saidu et al., 2019), although it has

also been shown to affect NRF2 phosphorylation via

PI3K and ERK1/2 pathways in neutrophils (Muller

et al., 2016). Perhaps because of its well-documented

anti-inflammatory and antioxidant effects, DMF has

also been shown to be neuroprotective in many different

neurodegenerative conditions. It has also been shown to

prevent hippocampal injury following ischemia, reduce

edema volume, and protect BBB integrity in mouse

models of stroke (Kunze et al., 2015; Yao et al., 2016;

Liu et al., 2019a) as well as improve cognitive function in

models of AD and subarachnoid hemorrhage (Liu et al.,

2015; Majkutewicz et al., 2016; Majkutewicz et al., 2018).

In addition, as mentioned previously, DMF protects

against both aSyn and Ab toxicity and can reduce tau

hyperphosphorylation (Lastres-Becker et al., 2016;

Campolo et al., 2018; Bahn and Jo, 2019).
tBHQ is another known activator of NRF2 commonly

used as a food preservative. tBHQ is an electrophile with

the ability to disrupt the KEAP1/NRF2 complex and

regulate oxidative stress. tBHQ has demonstrated antiox-

idant and neuroprotective effects. Treatment with tBHQ

reduced oxidative stress and prevented neuronal toxicity

and Ab formation in NT2N neurons (Eftekharzadeh

et al., 2010) and prevented Ab-induced cell death in

rats (Nouhi et al., 2011). It has also been shown to

decrease secondary injury and improve function recovery

following TBI and attenuate neurological injury after

intracerebral hemorrhage in mice (Sukumari-Ramesh

and Alleyne, 2016; Chandran et al., 2018).
Metformin is a highly prescribed antihyperglycemic

drug that is often used as a treatment for type II diabetes.

However, metformin can also activate NRF2, likely

through its induction of AMPK which subsequently

phosphorylates NRF2 (Ashabi et al., 2015; Joo et al.,

2016), and has been shown to be neuroprotective in

many neurodegenerative model systems. Metformin pro-

tects against oxidative stress-induced BBB damage, and

this was determined to be through NRF2 activation

(Prasad et al., 2017). Metformin is also well known for

its effects on mitochondrial function and biogenesis (Vial

et al., 2019) and also has documented antioxidant and

anti-inflammatory effects in rodent models of ischemic

Figure 1. Object location memory. CAW treatment (2g/L for 13
months) improved performance in 18-month-old WT but not
NRF2KO mice. NRF2KO mice were also impaired relative to age-
matched WT animals. n¼ 4–8, *p< .05, **p< .01.
WT¼wild-type; NRF2KO¼ nuclear factor erythroid 2-related
factor 2 knockout.
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stroke, AD, PD, and MS (Ashabi et al., 2015; Katila

et al., 2017; Ou et al., 2018; Mudgal et al., 2019).
The tricyclic compound acetylenic tricyclic bis(cyano

enone) (TBE-31) is considered to be one of the most

potent NRF2 inducers because it contains two electro-

philic Michael acceptors (Dinkova-Kostova et al., 2010).

TBE-31 has been investigated in cancer model systems

and has been found to have strong antioxidant and

anti-inflammatory effects which are thought to contrib-

ute to its anticancer activity (Onyango et al., 2014;

Knatko et al., 2015; Chan et al., 2016). It has also

been shown to reduce lipid peroxidation and improve

mitochondrial imbalance in Friedrich’s ataxia (Abeti

et al., 2015).

Conclusions

It is increasingly clear that NRF2 could represent a

viable therapeutic target in neurological conditions. Its

activation attenuates many processes involved in neuro-

degenerative disorders including mitochondrial dysfunc-

tion, oxidative stress, and neuroinflammation (Figure 2).

NRF2-activating compounds are already FDA approved

for use MS, and clinical testing is underway in Friedrich’s

ataxia, but the literature suggests that such activators

could be warranted in many other neurodegenerative

conditions as well.
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